


SIGNIFICANCE AND EXPLANATION

Consider the Hamiltonian system of ordinary differential equations:

dp 9H & _ °H
*) —_—— = - — = — = e
( 3t B Lol =y 3p (t,p,q) where p (pl, ,pn) and
= (ql,-..,qn). Such equations model conservative forced mechanical systems.

Suppose H 1is T periodic in t. Then one might hope for a T periodic
response. Under appropriate conditions on H, it is shown that this is the
case. Moreover (*) possesses a family of infinitely many distinct subharmonic

solutions, i.e. solutions having period kT where k 1is an integer.
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ON SUBHARMONIC SOLUTIONS OF HAMILTONIAN SYSTEMS

! : T
Paul H. Rabinowitz

INTRODUCTION

Consider the Hamiltonian system of ordinary differential equations

; g =% ‘
(0.1) 2= gH (t,2), ﬂ= [I OJ |

2n : : : ; ;
where 2z € R and H 1is T periodic in T. It is then natural to seek T

|
|
|
i

periodic solutions of (0.1). Since H is kT periodic for all k e N, one
can also search for kT periodic solutions (called subharmonics). This latter
quest is complicated by the fact that any T periodic solution is a fortiori

kT periodic. Thus an additional argument is required to show that any sub-
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harmonics are indeed distinct. Our main goal in this paper is to obtain the

existence of subharmonic solutions for certain Hamiltonian systems which are 3
either sub- or superquadratic, i.e. which grow either less or more rapidly

than quadratically at ® in an appropriate sense.

e

§ “Some existence results for T periodic solutions of (0.1) were presented

in (l) for superquadratic Hamiltonian systems using finite dimensional mini-

max arguments together with estimates suitable to pass to a limit. An improved

existence mechanism was introduced in (2) and applied to some of the super-

Sl ol e ety

{ e T
quadratic problems of (1) as well as to several subquadratic cases. Jée will

g
E
§
[

show‘here that these problems possess not only one T periodic solutions él) 2 ot
but infinitely many distinct subharmonic solutions v(zk\ A word of caution
R

must be entered at this point. Although (zkj'has period kT, it may not be

the case that (E;l\has minimal (i.e. primitive) period kT. Indeed sim-

ple examples show that there may be an upper bound on the minimal period of (f@'?”““
Z out K \
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Sections 1 and 2 are concerned with superquadratic Hamiltonian systems. In

§1, using the variational framework of [2], we first establish the existence of
a T periodic solution of (0.1) in a somewhat more general context than was treated
in [1]. A comparison argument and some simple estimates then yield a family of
distinct subharmonics. In §2 we study the behavior of z, as k > ». 1In partic-

ular under further hypotheses on H we show zk - 0 and has a minimal period
which tends to «® as k > », Lastly similar results are obtained for a family

of subquadratic Hamiltonian systems in §3.

We do not know of many works on subharmonic solutions of Hamiltonian systems.
in the global setting treated here. For a single second order equation, super-
quadratic results related to ours, but containing much more information, have
been obtained by Jacobowitz [3] and by Hartman [4] using the Poincara-Birkhoff
fixed point theorem. See also Nehari [18] and Wolkowisky [19]. 1In work in
progress, Clarke and Ekeland have shown there are a family of distinct subhar-
monics for a second order convex subquadratic Hamiltonian system [5].

Local results centered about the Birkhoff fixed point theorem and Birkhoff-
i Lewis Theorem have been the object of a considerable amount of study and

establish the existence of long periodic solutions of (0.1) near an equilibrium
or periodic solution. See e.g. Birkhoff [6] or Siegel-Moser [7, §24] for the
Birkhoff fixed point theorem and applications to the restricted three body prob-
lem. More on such applications can be found in Moser [8] and Conley [9]. For
the Birkhoff-Lewis Theorem, see e.g. Birkhoff [10], Birkhoff-Lewis [11], Lewis

[12], Arnold (13], Harris [14], or Moser [15].

We thank Charles Conley and Jlirgen Moser for several helpful conversations.




§1 THE SUPERQUADRATIC CASE

o We begin this section by proving the existence of one nontrivial solution to
1.1 z = §H (t,z).
( ) } Z( 1 2)

Suppose H(t,z) = &(z) + ﬁ(t,z) with &(z) a quadratic form and H satisfies

(H)) fi(t,z) >0, teR, zeR"

(H,) H(t,z) o(|z|2) at z = 0

(H;) There is a u €(2,» and R>0 such that0 <pH(t,z) < (z,ﬁz(t,z)) s
R

for all te R, |jz| > &

(H/) There is a T>0 such that ﬁ(t + T,2) = ﬁ(t,z) for all t€ R, z€ ]R2n

5 (HS) There are constants a,Rl >0 such that IHz(t,z)| % a(z,f{z (t,z)) on ”

R
for all teR, {z] > R, -

In (H3), (H5) , and the sequel, (-,°) ; denotes the usual Euclidean inner
R
product in ", Since & 1is quadratic, there is a symmetric 2n x 2n matrix

@ such that &(2z)

1 ; ;
5(@z,z . Consider the eigenvalue problem

) on |

(1.2) Q¢ = )\’g

Since & is real, whenever ()\,£) is an eigenpair for (1.2), so is (I,‘E—). Sup-

pose

() (1.2) has 2n purely imaginary eigenvalues )‘j = iuj where uj>0,

n and ) 2k, 193 8%a

: 12 j4n = Y

I A

with corresponding eigenvactors

1A
A

S Sk
3 e

)] £ —.."- A T
i <n and j+n Ej,l_'J_n.
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Note that & need not be definite. We can normalize the Ej so that

2
(1.3) l(egj.gh)Ran == e

and 6jk is the usual Kronecker §.

Theorem 1.4: Suppose Hecl(R x r*" ,R) and satisfies (Hl) - (H.) and @ .

Then (1.1) possesses a nonzero T periodic solution.

Corollary 1.5: Suppose Hecl(R X Rzn, R) and satisfies (Hl) = (H5) and

® = 0. Then (1.1) possesses a nonconstant solution.

Remark 1.6: If H is independent of t, these results reduce to Theorem 3.3

and Corollary 3.54 of [2] and are true for all T3>0 without assuming (HS).
Indeed still stronger statements are valid for the autonomous case [16]. The
proofs of Theorem 1.4 and Corollary 1.5 are similar to the proofs given in

[2]. Since the dependence of certain sets on parameters is essential in getting
the subharmonic solutions of (1.1) later, we will sketch the proof of Theorem

1.4 carrying out in detail those parts of the argument which differ from [2] and
where precise estimates are necessary in the sequel. We will not prove Corollary
1.5. 1Its proof is similar to but simpler than that of Theorem 1.4.

The existence lemma which Theorem 1.4 requires was proved in []]:
Lemma 1.7: Suppose E is a real Hilbert space, E = El q9E:2 where E2 = Ei
and fe Cl(E,]R) satisfies:

1
= — + = @ L) + ’
(£.) f£(u) D) (Lu,u) b(u) where u u1 o u2€ El EZ' Lu Ilul L2u2

and Li:Ei-» Ei is bounded linear and self adjoint, i = 1,2.
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Choose rl so that
| (1.29) ts) = 52 - a s;.+ a, <0
z ; o 3 4 = -
) (o I
j for all s >r . Set M=max y(s) and observe that [|z=|I© + a3||z [V > e
' k! S [O:rll
| as Hz}‘u* ©, Hence for ze aBr NnE and r2 sufficiently large, we have

e 2
M < ||z )]2 +a, ”zoll“ and £ <0 Zw on 3Q with Q= {selo <s < rl}»s(Lr
. 2
é Since f satisfies the hypotheses of Lemma 1.7, it possesses a positive

critical value c¢ and corresponding critical point ZK' It follows from [2]
that zy is a classical solution of (1.12) and z, is nonzero since f(zx)> 0.

It remains only to prove that 2, satisfies (1.1) for appropriately chosen

K. By Remark 1.9,

2 i 27 '
(1.30) c < sup £(z) = sup s = lz || - [ Hg(t,2)at ,
2eQ l[zo+z_[| L re[O,rI] 2 é
i
< r2 2
A = 1 .
: i Now as in (1.17), (1.19),
27 =
3 2 1_1 = L
i | sl 3) M1 + r 2 {2 u] fo (zK,HK )) 5 g s asllzK{hP a,
? Hence
4
| {1.32) HzK]Lui M, (independently of K)
§ By (Ho for H, and (1.30) - (1.32),
3
(1.33) i éK]ILl < || g H, (2 ”Ll < fl© ZKHLl + ”sz(t'zx)llLl <M. S

-10- i




Finally by (1.33) and (1.32),

(1.34) llz, 1l

< z + a Zz e M
- | Klk} 7 Il KlkP 4

Thus for K > M, we have HKz(t,zK) = Hz(t,zK), (1.1) is satisfied, and the

proof is complete.

Remark 1.35: If H is independent of t and ® is not positive definite, (1.1)

possesses at least one nonzero equilibrium solution. This may be the solution

obtained in Theorem 1.4. A deeper result in [16] gives nonconstant solutions

for this case assuming only (H3). However if ©® is positive definite or

=@ f(zK) >0 and H(z) >0 imply zK is nonconstant.

Having established the existence of one nonzero solution of (1.1), we will

show that in fact there are infinitely many.

Theorem 1.36: Under the hypotheses of Theorem 1.4, there exists a sequence

(kj) cN, kj - ® , and corresponding distinct kj T periodic solutions of (1l.1).

Proof: We can take T = 2m. Choose k € N. It is convenient to make the

change of variables T = k-lt. Thus if 2z(t) is a 27k periodic solution of

(Le1),

Z(t) = z(kt) satisfies

oY

d —
g = k;Hz(kT,; )

and we seek a 2T periodic solution of (1.37). Since k H(kT,2) satisfies

(Hl) - HS) and (2), Theorem 1.4 provides a critical point Ck(T) E of

2T
(1.38) £, =20 -k [ B (kt,0) at
0 K
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N ——

where K depends on k, which for appropriately large K is a classical
solution of (1.37). Note that ;l(kr) also satisfies (1.37). 1If Cl(kT) = *k(w',

it is easy to check that

(1.39) (e fk(Ck) =k fl(Cl) = ke

k 1

Since ¢ >0 by Lemma 1.7, it follows that et ® a8 k> ® . We will show

next that this is impossible since c¢ is bounded from above independently

k
of k.

Recall from (1.30) that

(1.40) o, <Ti(K)

where we have written rl(k) to emphasize its dependence on k. The parameter

rl was determined in (1.29) which in turn was derived from (1.26) - (1.28).

The corresponding equation satisfied by rl(k) is

(1.41) Y (s) = s kas® + ka, <0

for all s > rl(k). It follows that

= N

ka a

Sl T
(1.42) r (0 <max [2{¥72 | 4
3 3

Thus the critical values ¢, are uniformly bounded and therefore there is a klﬁ N

such that Ck(T) # Cl(kr) for all k >k.,. Reapplying what we have just shown

1

to the 27 periodic function le(klr,z), it follows that there is a sequence

of nonzero 27 periodic solutions Zj(r) to

az
‘ = = k. 1,2
(1.43) ar - Ik, §H (3k T.2)

with %j(T) # %l(jT) for all j > k2. Moreover from the form of (1.43) and




g S

the corresponding variational problem, zj(T) =g (1) and zj(T) # Cl(jk,T) for

jk

1
P ak .
all 3__kl It follows that we have a sequence cl(t), Ck (t/kl), Ck K (t/klxz)...

SE 32
of distinct nonzero solutions of (1.1) and the proof is complete.

Remark 1.44: The argument of the last paragraph can be replaced by the following
one which gives a wider range of periods for the solutions so obtained. If for

some k >m, ck(r) = Ck(t/k) = g(t) = r,m(t/m). then z(k1) = ckm

and gmT) = ;n(T). Moreover as in (1.39),

(1.45) Cp = fk(ck) = kfl(C); o fm(%m) = mfl(C)

Since fl(C) >0 and {cj} is bounded, it follows that there can be at most

finitely many k >m such that Ck = Cm.

Remark 1.46: If H 1is independent of t and z(t) is a solution of (1l.1)
so is ze(t) = z(t + 8) for all e©€[0,2r). Since fk(ze) = fk(Z)' the solu-

tions obtained above must differ by more than a simple translation for the case.

Remark 1.47: If 1I(t,z) splits into the sum of kinetic and potential energy

terms, e.g. H(t,2 = %—|pl2 + V(t,g), simpler arguments without requiring (HS)

can be used to establish analogues of results of this and the following section.

(See also [1])
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§ ASYMPTOTICS

In this section we will study when the functions Ck obtained in Theorem

1.36 are uniformly bounded in

and therefore possess a limit, when this

Icl
limit is zero, and when the minimal period of Ck tends to infinity as k- « .

. =1 2HiT :
For convenience we always assume T = 27. Let 2ﬂ2k denote the minimal period

of Ck(T). Then Ck(t/k) has minimal period 2nk£;1.

-1
Proposition 2.l1: Under the hypotheses of Theorem 1.4, if klk-¥+ «© along some

subsequence, then the functions Ck(t/k) are uniformly bounded in || || 1
&)

Proof: Since

2m
t2,2) ¢ =A(L) -k [ Hkr)dr
0
onl}
=k ke () B ey - Bkt g )]m
0 25 4 k:RZn k|
2n5_
[ Erorias g
= = = -
" §icE [2(ck(k).Hz(t,§k)) 5 H(t,t,k)] at,
0 R
by (),
27k
°x | T 2 21k
(2.3) =5 d k (¢ ,H (t,C )) Al e
3 Loy k' 'z k' 'p2n 2 8
Therefore
271k 21k
X 7 [ 5% | P
(2.4) = g >y | A {E SRR O I ) dt s a k 7 dt
3 L ' =
' 3 1% k'z k' g2n a’, i

via (1.14). The H8lder inequality then gives a bound on ”ckll joo 28
L
t . :
K (E), z‘Rl in the interval (s,0), then for ¢t € (s,0),

Y

14~




—_
o
Ul

Q
t
fe, 591 = fo s fsle(x,ck\ |lax

= 21rk/2k i
<z, =] 4 fo (|, | + |Hz(x,ck)|)dx

|A

s
lﬁk(;)l o

-1 :
by (2.3) and (HS) and the Ll bound. Integrating (2.5) over [0,27kg 1 with
respect to s, our Ll bound implies that the functions are uniformly bounded

an-. L2 candi by §(15.1) in Cl.

Remark 2.6: It follows immediately from Proposition 2.1 that a subsequence
: t : 1 S 4
of the functions ck(gﬂ converge in C to a periodic solution of (1.1)

If H is independent of t, we can improve on Proposition 2.1

Proposition 2.7: If H = H(z) satisfies (Hl)— (H3), the functions Ck are

uniformly bounded in Cl.

P¥xoofs - As dan (2.2)

27k &
(2.8) e / [5 (ck,Hz(ck)) Blpelt H(;k):l dt
0 bi2)
f2ﬂk :
> a |z ,H (z )) | dt - ka
5 0 k' 2 :RZn 6

Since H(ck) = constant,

21k -1 2rk 3
[ H(; Jat <y~ | AR Gl (48 B RES &1
0 K 0 k V4 k ]R2n

(2.9) 21k H(Ck)

k
carlie

«]lG=




Now (1.16) and (2.8) yield an L*® bound :

for Ck and (1.1) provides the C

bound.

Next we study a situation in which Ck >0 as k-2 . For this we require

a global version of (H3):

~

(H3): There is a € (2,%) such that O<uH(t,z) < (z,Hz(t:Z))

m2n

for all ze]Rzn\{O}and te R

Obviously (ﬁs) implies (HB)

adl ¥ P30 gng LEE L,

and in addition for the corresonding HK, for

3; | >4 gy (HH
(2.10) HK(t.rC) HK(t.O ) (p)
Choosing in particular r = 1, we see (1:13) also implies (H2) ;

Theorem 2.11: Suppose Hecl(]R X len, R) and satisfies (Hl)' (}33), (H,)

4

(H.) and (). Then (0.1) possesses a family of kT periodic solutions which

5

converge to 0 as k -+ «» uniformly in Cl(]R ,]Rzn).

Proof: By our preliminary remarks, Theorem 1.36 is applicable here and we have

a family of solutions ;k(t/k) as in that result. We will obtain uniform L~

and Cl bounds for these functions. By (2.2) and (133),
e T
(2.12) & 2= / (€ /H (6,2)) , at
0 R
21k
Py .
i G
2 N5 jo H(t,Z ) dt

Let IC[0,2™] be an interval in which Ick(§)|“: R,+ We can assume By 2 A s

If I = [0,21k], then by (2.10)

21k 21K

(2.13) / H(t, g )dt > | I;kludt > 21k y R‘lJ s ®
0

0

st e




as k » » where Yy = min H(t,Z). But since ) is uniformly bounded
teR, |g|=1
in k, (2.13) is contrary to (2.12). Hence for all large k, by lengtheninc

I if necessary we can assume there is an sé€ 3I such that Ick(i')l = Rl.

Now for any t GIk, as in (2.5),

t
t ~
(2.14) le 6] <l o] # fs (192, | + A _ex,z) ax

| A

2n

t t
Rl x 24 f leldX + af (Ck:Hz(X.Ck)) dx
S s R

Since on

I,

Iu

(2.15) (BB (0a5)) gy 2 EIEE) > uy o

>y g |

we can estimate the second term on the right in (2.14) in terms of the third

term. Then (2.14) and (2.12) give an L® bound and (1.1) a C1 bound for Z

N

By these bounds,

Ck converge along some subsequence uniformly on compact

subsets of R to Z. For m >k by (2.12) and (ﬁ3),

2Tk

U= u

]R2n

L s
& iey ) fo (C JH_(£,2 ) dat.

Letting m > ® gives

2Tk

m —

R?n

Sn— 1 1 A
lim e, > (5 = ) jo (z,H,(¢,2)) at

for all k €N . Hence

o 15 if o a
(2.16) L o, 2 o - fo(z,Hz(t,Z)%Rzn at > 0

unless
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We will use a comparison argreement to show that cm* 0 and therefore

Z 20, PFor any. O > 0, by {2.10),

( M
; 1z ]
(2.17) HK(t,z) > b(o) [‘_"0

for lzl > 0 where b(0) = min H (t,). Let xmf Cw(]R,]R) satisfy x,w(s) =1
t JR,I:;IT=0
for s <w; =0 for s > 2w; and x'(s)< 0 for s € (w 2w). Choosing

o€ (O,%—) , define

= & s, b = n
(2.18) G(s) = BI[(1 = X (s))b(0) (o) ]Xl(s) + (1 Xl(s))Y S
Then for B sufficiently small,
(2.19) c(lz|) < ﬁK(t,z)

2 e : :
for all te€eR, z€ R ;s . Moreover it is easy to verify that for B possibly

still smaller,

(2.20) 0 <uG

| A

(Z'Gz) ]R2n

it}

l). Since G

for |z| > 20 and B 1is independent of 0 € 0,5 0 for |z| < o,

it follows that G satisfies (Hl) - (H3) and is independent of t. Set

27
(2.21) 9, (2) = A2 -k [ (&= +c(lz]) at
0
It then follows from Remark 1.6 that for each ke N, gk has a critical
value dk and corresponding critical point W By (2.19),
(2.22) £.(2) <9, (2)

for all z €E. The construction of S and Q (which depend on k) given

in Theorem 1.4 and (2] shows the same S and § can be used in the

-]ge

o ....-T--«‘ mﬂm,—- B W
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variational problem which determines ) and dk

. Moreover by (2.22) any

set which is admissible for the minimax characterization of dk

admissible for x (See p. 247-248 in [2]). Therefore by (2.22),

{2.23) D Sed e

We will show dk-*O as ko,

The proof of Theorem 1.4 with ﬁ replaced by kH shows that

k
€ N
Fk where now ek El BBl,

"

~k
(s @
8 span {ek} E2

k
15

etc. Hence by Remark 1.9,

(2.24) 0 <d, < sup gk

E
k

L}

For weF , we have w [|wl]| .t where ¢ = Be
k L2

k

and

]

(2.25) Izl
L2

with a, independent of k. Choose any weF

by $2:25)

k

2T 2m
(2.26) k [ G(lwhat < amw) -k [ Lwat
0 0

2 2T
lwil®, (@) -k [ 2@ar)
L 0

| A

0

m
= L=~k BF e
E span {¢jm|(uj ) sgn ( ]'5])

2 3
b az[j 2| (cmr] =
0 0

n@n

S

is also

+ v with veﬁgﬁasl

2

such that gk(w)> 0.

82 Iwll?, (ate,) - x jznaue yat) < L] 2
s 2 e, 4 < 2l

3

2
L

i 2
(87| (e,) + & 12| (v))ar

Then
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By (2.20), letting Ac = {1 GIO,ZWI}IW(T)I > 20}, we have

——————

2r G(20) u
(2.27) [ stwhar > [ c(lwhar > = [ |w|far
0 A (20) " A
ag o
= B llw|]¥—= 21G6(20) >
(20)¥ ¥
£
§
Z 9(-—2"-%- llwll”, - 276 (20)
(20) L

Combining (2.26) and (2.27) leads to

3 G(20) N
(2.28) a_ lbwll > [a ==2 Jlwl*. - ZITG(2U)]
5 2 4 ot 3

which implies

1 1
S UAN~2
e [2a_(20)¥
4 (20) 5
(2.29) [| wl| < max [ ;
L2 a, a4G(20)k
R
-2
Z max (a6o,a7(o)k
Therefore by (2.21), (2.24), and (2.29), 5
u=2
22 2
(2.30) a. < ag max (a o, a7(o) k
so
(2.31) lim 4, < a aza2
k> 8

Since o€ (0,%) is arbitrary, it follows that lim dk =0 and 2 =

k>

-20-

0.

e ——————




g It remains to show that ck-*O uniformly in Cl(Ii,Rzn). By (2.12) for
% all s >0,
: 21k :

(2.32) B fo H(t,z)at > txen;:'k;la:(:,c) m, (s)

where mk(s) denotes the measure of {te [0,27k] Ick(ﬁ)l > s}. Since ik 0,

mk(s)~+0 as k *x2 Choose any € > 0. Then for any large k and any te R,
there is a O€R such that |t - o j_mk(s) and ]Ck(£)| > €. Therefore

. g E %%
(2.33) SRR A e

dx < e + mk(s)M

= ek mk(l)M

where M 1is an upper bound for “ck||1.
C
and (1.1) implies the same for &k' The proof is complete.

Therefore Ilt‘,k”Lw-> 0 as k » =

Next we study the behavior of the minimal period of ck as k > o, As

was mentioned in the introduction, the minimal period need not tend to infinity.
E Indeed if H(z) = g(|z|2) with zeR’ and g'(s) > 1, the minimal period

of any solution of (1.1) cannot exceed 7. (See Remark 2.56 of [1]). Tue

next result however gives a criterion for periodic solutions of (1.1) which

converge to 0O to have a long minimal period.

Theorem 2.34: Suppose Hecl(R X Rzn , R) and satisfies

(He) H(t,z) = E(t,z) + R(t,z) where H is positive for z # 0, homogeneous

of degree B > 2 in z, and R(t,z) = o(|z|B), R, (t,2) = o(lle-l) at z = 0.

If z, are a family of periodic solutions of (1.1) and zk» 0 uniformly

as k = ®, then the minimal period of zk-b o as k = o,




-1
Proof: Let Tk be the minimal period of 2, and set T = 21rt'1‘k . Then

Wk(T) H zk(t) is 27T periodic and satisfies

dw.
(2.35) e

art om

Let [z] denote the mean value of a 2m periodic function =z(t), i.e.

1 2m
21 = = fo z(t) dt

Iif wk = (u,v), then (2.35) implies

f21r
(2.36) 2 (V'l.l)
0 R2n

|2 ; | 12
s 2y - o1l | il . < 2ll% | = H (.,w) ]
= L2 L2 k L2 b z k L2

Consequently since Woor 0 as k »«, by (H6) and (2.36),

2m T T

8 e K
(2.37) B, fo lw, [Far_< fo (W H (5=, W)

T
k 2
2T ]R2n i “Hz(' 'wk)“ L2

2(8-1)d

27

27
B=2 8
< MT |lw || / lw, |” at
20 R @y k
which implies

M
(2.38) T 2

> —_—
k — B =2
Il w I
as k - =,
Note that the quadratic part 2 of H vanishes identically in the above
theorem. When this is not the case, there is a classical result of Birkhoff

and Lewis [14,15]) which under appropriate conditions on & and the quartic

e T T




part of H at 0 guarantees the existence of a family of subharmonic solutions

B RN

zk of (1.1) which converge to O and have minimal periods tending to *®

as k > ». We will next show how a partial version of this local result fol-

lows from our global framework.

Theorem 2.39: Suppose Hecl(]R X len,R) and satisfies ), (H2).(H4), and

(H' ) There is a ue€(2,%) and r>0 such that O0<bH(t,2) <_(z,ﬁz(t,z)) 2n

2 R

for 0< |z|<2r

Then (1.1) possesses a sequence of kT periodic solutions 2, which converge

to 0 as k >,

Proof: Let Xw(s) be as in Theorem 2.11. Set

;l(t,z) = Y(z) + xr(lzl) ﬁ(t,z) s (= )(r(lzl)olzl4
2 .

Then for p sufficiently large H satisfies (ﬁ3) with 4 replaced by

E = min(p,4). Consider

A AR R T 0

(2.40) 5 =;ﬁz(t,z).

4 { By Theorem 1.36, (2.40) possesses a sequence 2 of KT periodic solutions

k
2
and by Theorem 2.11, zk > 0 as k > © uniformly in Cl(]R , R n). Hence for

satisfies (1.1)

large Xk, ||zkHLw<r and zZ,

Remark 2.37: A similar result obtains if & = 0 and then if H satisfies

(H6) , the minimal period of z, - ® as k »> o,

SR . Y0



§3 THE SUBQUADRATIC CASE

In this final section analogues of the results of 81-2 will be obtained

for subquadratic Hamiltonian systems. Suppose H satisfies (H4) and

(H,,) There is a v €(1,2) and R>0 such that

0 <(z,H (t,z)) < VH(t,z) for |z| > R,
z mZn -

IHz(tlz) I

—_ i
(H ) 1lim ShEaS i
8 lzl"” IZ' = 2

(Hg) There are constants a;.a, >0 and s €(1,v] such that H(t,z)> a

2n

12

for t €R, z €R
2n

It was shown in [2, Theorem 4.11] that if He Cl(R x R R) and satisfies

the above conditions and E is as in §1, then

T
g(z) = [ [H(t,z) - (p,d) oy ) dt
(6} R

satisfies (fl) = (f4) of Lemma 1.7. Thus g has a critical point and (1.1)
a corresponding T periodic solution. For the verification of (fl) - (f4)

- +
oen now takes F‘..1 = Eoe E and E2 = B where EO is the null space of

s + = : § <
A in E, and E , E are subspaces of E on which A is respectively

positive and negative definite. These three subspaces are orthogonal both in

+ -
£ and in @G, InSeed B A L ot ol dnd W Lave

- 2
| 2]i? = az"y - a2y + |20

(0} - A ! S
where z =z + z+ + 2z €E. (See [2]) Lastly the appropriate sort of linking

here is provided by choosing S = {v} + E, and Q= B,NE, where R is suf-

ficiently larger than ||v|| . Actually in [2] the choice of v = 0 was made.

However the proof is unaffected if any VveE_, is chosen provided that

2

R = R( ||v|| ) is suutably large. This freedom will be crucial for our next

ST, A TR

e i e




result which establishes the existence of subharmonics for the present situation.

2n
’

Theorem 3.2: Suppose H'ecl(]R x R R) and satisfies (H4),(H7)-(H9).

Then for all k €eIN, (l1.1) possesses a kT periodic solution and

“ zk”Lm—» ®as k > o,

Proof: As usual we set T = 2n. Consider

2T
(3.3) g, (2) =k | H(kt,z)dT - A(2) .
0

By Theorem 4.11 of [2] cited above, gk possesses a critical value Cp for all

ke N and a corresponding critical point satisfying (1.37). As in 81, if

the functions z, Wwere all the same, we would have Co gk(z ) =k c,. We

will show in fact that for large Kk,

. ;
(3.4) c 2 ajk i
for some a3>0 and B >1. Moreover since
2m . 5
= = T - —
¢ = 9 (2} =k fo [H(kT,z.) = 3 (zk'Hz(kT'zk))R2n] art,

if  {|| z || [} were bounded, we would have
oo

s le ||z k

X k”Lmi o

contrary to (3.4). Thus (3.4) implies ||zk” L™ as k> o,
L
It remains to verify (3.4). This estimate hinges on making a suitable

choice of vy € E2. By Remark 1.9,

(3.5) S JJSlf 9

- o B
For ze S we have z = g° + z + 6 E®E o span {ul where ue BBlﬂ Ey

=25




and & 1is free for the moment. Therefore by (Hg),

% 0 - s -2
(3.6) g (2) 2k [ (afz +2 + &uf -2 ar+ ||27||° -5
0

2

y : : ] i 8 -1
To estimate the integral term, arguing as in [2], let o =1 -s ~. The

embedding of E in (Lc(sl))2n is continuous. Therefore ﬁ, the negative
: 1 .2n
norm dual of E, contains (L?S )) [17]. Hence
(3.7) lzll | >a, llzll, -
4 A
L E

By definition,

(3.8) lz]]. = sup (z,w) 5= sup 122 ,w®)
L

+ (z- w-) 5 (z+ w+)
E o |lwf <1 . g

el <1 L L L

Choosing w = u/ HuII, we find

-2

(3.9) 9,(2) > ak® -1 + [|27]* - &
Setting & = k¥ shows

(3.10) 9, (2) > akk -1 - x2Y.

Finally choose <y so that
(3.11) 1'% gy s @y > 1

which is possible via our choice of s in (Hg). Hence (3.4) obtains with

g =1 % Bys

An improved version of Theorem 3.2 can be obtained if H is a simple sum

2

of kinetic and potential energy terms. Suppose e.g. H(z) = |p| + V(t,g).

(ST

Then (1.1) reduces to a second order system

(3.12) g+ v (ta) =0

el el f e T Y T

2!




g(z) =

which formally is the Euler equation arising from the functional

T
[ Wit,q) -% la]%1at
0

In this setting the analogue of Theorem 3.2 holds without assuming (HB).

Corollary 3.13:

with g replacing
(qk) with qQ
Proof:

If VGCl(]R X ]Rn, R) and satisfies (H4), (H7), and (Hg)

z, then (3.12) possesses an unbounded sequence of solution

having period KkT.

Since the proof is essentially the same as that of Theorem 3.2, we

will only indicate the appropriate underlying spaces and why (Hs) can be dropped.

(See also [2], Theorem 4.11)

with norm

S S ————

we have

(3.14)

where £ = [q].

The appropriate choices for

Hypothesis (H8) is used only to verify

Wt sth)?®

We take T = 271 as usual and E =

27
2 2 2
all® = [ da]® + lal5at

0]

are E, = {qd €Elg = [q)} and E_, = {g€E|[q] = 0}.

El 'Ey 2

(f3) for g. To see why it is unneces-

sary in this setting, suppose g(qj) <M and q'(qj)* 0O as j » . Then drop-

ping subscripts and arguing as in (3.6)-(3.9) via (H7) and (Hg), for large 3J

27
1 1 1
+=lall >9(@ -39 (@a= [ Wit,@ -=(qVv)) ldt
2 2 0 2 q g
9 27 27 i
B J'O vit,@at - M > a, fo la|® at - a,

2 aglel” -,

Note that (H7) implies that




A O

(3.15) Vit,Q) < g lq|¥ + a,

for all te€eR, qGRn. Since g'(gj)->0 as i-»« , for large 73,

(3.16) g'(qj)w| < vl

for all Y €E. Setting ¢ = q:i and droppoing the 3j vyields

| A

27
2
(3.17) I all |f tq.v_(e,@) _ at| +|lq]|
L* i R

|A

o llall + llall +

via (H,) and (3.15). Combining (3.17) with (3.14) provides a bound for IIqjh

and (f3) is verified.

Remark 3.18: A variant of Corollary 3.13 was obtained recently by Clarke and
Ekeland [5] who replace (H7) by (3.15) but assume V is strictly convex. Their
approach to (3.15) is rather different from ours and is based on arguments
from convex analysis, in particular use of a Legendre transform to reduce the
problem to that of minimizing a functional.

Our final result addresses the question of when the kT periodic solutions

obtained in Theorem 3.2 have minimal periods which tend to «~ with k.

2n
’

Theorem 3.19: Suppose H eCl(R x R R) and satisfies (H7), (Hg) with s =

IHz(t,z)l

i $
(Ha) lim '—Tz—l'—— -0,

2]+

and

(H, ) H(t,z) is strictly convex in z.

10

Let 2z, be a family of periodic solutions of (1.1) such that szH g
L

e




as k> . Then the minimal period of z, + o  agg ko,

g Proof: Suppose the minimal period of z, is Tk. Letting T = 27t ‘I‘;l and

wk('r) = zk(t), then as in Theorem 2.34, wk(T) is 27 periodic and satisfies

#

(2.35). Let Ek= [wk] and W w. =& . Then (2.35) implies

k k k
: TkT
(3.20) alimcll s s e 18, 4wl
L L L
g
zagn i, (ool
5
By (Hp), since ffwl _+® as k+= , given any € > O,
B ¢
(3.21) I Hz(-:wk)llf,: ellwli 4

for all sufficiently large k. Therefore by (3.20)-(3.21),

(3.22) ”wk||:,°° <a o ele |+ [ul] L°°)

1f {Tk} is uniformly bounded e.g. by M along some subsequence, then for

e < (‘fMa6)-1 where Yy > 2 is free for the moment, we have

(3.23) BB
kL

The strengthening of the hypotheses of Theorem 3.2 enables us to get a

linear estimate for |£kl in terms of || Wk“ o Next. By (H,) we find
L
27 ’I’kr 9
‘ (3.24) fo H(—z—_"' ;wk)d'r > Zﬂ(allgkl o az)

as in (3.6)=(3.9).

The form of (2.35) implies




2m T T
(3.25) § b wdey . aT w0

0 Zz 2T k :RZn

for all v €R".

e o el S o

But (3.25) is just the Euler equation for the variational 4
problem
2T TkT
(3.26) Min . ]0 Hig7 » W+ mdrt
n€IR e

and by (Hlo), n= gk is the unique solution of this minimization problem.

Therefore

2m T T 2m T

k k
(3.27) fo i, w )aT < fo H55 » W+ madr

2
for all n €R"". Choosing N = 0 and applying (H7) yields

2m Tkr 2m Tkr
(3.28) fo H(55 » w)at < / H(55 W)dT < a

w I +a
0 7 k =

8

Combining (3.24) and (3.28), we find

(3.29) g | < m | WkHLm* M,
: | Since
(3.30) 1|Wk||Lw g el |l Wk”rf’

i by (3.29)-(3.30),

(3.31) o ll o< o + 1) f[w || | +m,
L L .
which shows that HWk|| w ® as k >x. Then for k sufficiently large,
L -
(3.32) le | < my flw |l .
-30- [
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Returning to (3.23) then gives

My
(3.33) I WkllL,,,iY—_—l Nw ll .,

Choosing 7y so that M3(y-1)-l< 1, we see (3.33) is impossible. Hence T »

k
as k - » and the proof is complete.

Remark 3.34: As was the case with Corollary 3.13, an improved version of Theorem

3.19 can be given in the setting of (3.12). However we will not carry out the

details.

-31-
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